An Alpha-1A Adrenergic Receptor Agonist Prevents Acute Doxorubicin Cardiomyopathy in Male Mice
نویسندگان
چکیده
Alpha-1 adrenergic receptors mediate adaptive effects in the heart and cardiac myocytes, and a myocyte survival pathway involving the alpha-1A receptor subtype and ERK activation exists in vitro. However, data in vivo are limited. Here we tested A61603 (N-[5-(4,5-dihydro-1H-imidazol-2-yl)-2-hydroxy-5,6,7,8-tetrahydronaphthalen-1-yl]methanesulfonamide), a selective imidazoline agonist for the alpha-1A. A61603 was the most potent alpha-1-agonist in activating ERK in neonatal rat ventricular myocytes. A61603 activated ERK in adult mouse ventricular myocytes and protected the cells from death caused by the anthracycline doxorubicin. A low dose of A61603 (10 ng/kg/d) activated ERK in the mouse heart in vivo, but did not change blood pressure. In male mice, concurrent subcutaneous A61603 infusion at 10 ng/kg/d for 7 days after a single intraperitoneal dose of doxorubicin (25 mg/kg) increased survival, improved cardiac function, heart rate, and cardiac output by echocardiography, and reduced cardiac cell necrosis and apoptosis and myocardial fibrosis. All protective effects were lost in alpha-1A-knockout mice. In female mice, doxorubicin at doses higher than in males (35-40 mg/kg) caused less cardiac toxicity than in males. We conclude that the alpha-1A-selective agonist A61603, via the alpha-1A adrenergic receptor, prevents doxorubicin cardiomyopathy in male mice, supporting the theory that alpha-1A adrenergic receptor agonists have potential as novel heart failure therapies.
منابع مشابه
Differential cardioprotective/cardiotoxic effects mediated by beta-adrenergic receptor subtypes.
Recent data suggest that beta-adrenergic receptor subtypes couple differentially to signaling pathways regulating cardiac function vs. cardiac remodeling. To dissect the roles of beta1- vs. beta2-receptors in the pathogenesis of cardiomyopathy, doxorubicin was administered to beta1, beta2, and beta1/beta2 knockout (-/-) and wild-type mice. Expression and activation of MAPKs were measured. Wild-...
متن کاملAn Oral Selective Alpha-1A Adrenergic Receptor Agonist Prevents Doxorubicin Cardiotoxicity.
α1A-ARs play adaptive and protective roles in the heart. Dabuzalgron is an oral selective α1A-AR agonist that was well tolerated in multiple clinical trials of treatment for urinary incontinence, but has never been used to treat heart disease in humans or animal models. In this study, we administered dabuzalgron to mice treated with DOX, a widely used chemotherapeutic agent with dose-limiting c...
متن کاملProgression from hypertrophic to dilated cardiomyopathy in mice that express a mutant myosin transgene.
A mouse model of hypertrophic cardiomyopathy (HCM) was created by expression of a cardiac alpha-myosin transgene including the R(403)Q mutation and a deletion of a segment of the actin-binding domain. HCM mice show early histopathology and hypertrophy, with progressive hypertrophy in females and ventricular dilation in older males. To test the hypothesis that dilated cardiomyopathy (DCM) is par...
متن کاملDifferential cardioprotective/cardiotoxic effects mediated by !-adrenergic receptor subtypes
Bernstein, Daniel, Giovanni Fajardo, Mingming Zhao, Takashi Urashima, Jennifer Powers, Gerald Berry, and Brian K. Kobilka. Differential cardioprotective/cardiotoxic effects mediated by !-adrenergic receptor subtypes. Am J Physiol Heart Circ Physiol 289: H2441–H2449, 2005. First published July 22, 2005; doi:10.1152/ajpheart.00005.2005.—Recent data suggest that !-adrenergic receptor subtypes coup...
متن کاملThe Alpha-1A Adrenergic Receptor in the Rabbit Heart
The alpha-1A-adrenergic receptor (AR) subtype is associated with cardioprotective signaling in the mouse and human heart. The rabbit is useful for cardiac disease modeling, but data on the alpha-1A in the rabbit heart are limited. Our objective was to test for expression and function of the alpha-1A in rabbit heart. By quantitative real-time reverse transcription PCR (qPCR) on mRNA from ventric...
متن کامل